Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(32): e2304720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776058

RESUMO

While organic photovoltaics are accessing specific application sectors taking advantage of their unique properties, it is important to identify as many differentiators as possible to expand the market penetration and consolidation of this technology. In this work, for the first time, the large-scale fabrication of organic photovoltaic modules embedded into structural plastic parts through industrial injection molding is demonstrated. Thermoplastic polyurethane is chosen as the injected material to show that this additional processing step can yield flexible, lightweight photovoltaic modules with enhanced device robustness and virtually unchanged performance. The critical optomechanical and physico-chemical material properties, as well as the plastic processing parameters to enable in-mold plastic solar cells with improved performance and stability, are discussed and provided with perspective.

2.
Nanoscale ; 14(13): 4987-4993, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35258069

RESUMO

Heavy-metal-free colloidal nanocrystals are gaining due attention as low-cost, semiconducting materials for solution-processed optoelectronic applications. One common limitation of such materials is their limited carrier transport and trap-assisted recombination, which impede the performance of thick photoactive layers. Here we mix small-size and large-size AgBiS2 nanocrystals to judiciously favour the band alignment in photovoltaic and photodetector devices. The absorbing layer of these devices is fabricated in a gradient fashion in order to maximise charge transfer and transport. We implement this strategy to fabricate mixed AgBiS2 thin film solar cells with a power conversion of 7.3%, which significantly surpasses the performance of previously reported devices based on single-batch AgBiS2 nanocrystals. Additionally, this approach allows us to fabricate devices using thicker photoactive layers that show lower dark currents and external quantum efficiencies exceeding 40% over a broad bandwidth - covering the visible and near infrared range beyond 1 µm, thus unleashing the potential of colloidal AgBiS2 nanocrystals in photodetector applications.

3.
Nanomaterials (Basel) ; 10(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059432

RESUMO

By combining X-ray absorption fine structure and X-ray diffraction measurements with density functional and molecular dynamics simulations, we study the structure of a set of AgxBi1-xS2 nanoparticles, a materials system of considerable current interest for photovoltaics. An apparent contradiction between the evidence provided by X-ray absorption and diffraction measurements is solved by means of the simulations. We find that disorder in the cation sublattice induces strong local distortions, leading to the appearance of short Ag-S bonds, the overall lattice symmetry remaining close to hexagonal.

4.
ChemSusChem ; 8(24): 4209-15, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26663820

RESUMO

The application of conjugated materials in organic photovoltaics (OPVs) is usually demonstrated in lab-scale spin-coated devices that are processed under controlled inert conditions. Although this is a necessary step to prove high efficiency, testing of promising materials in air should be done in the early stages of research to validate their real potential for low-cost, solution-processed, and large-scale OPVs. Also relevant for approaching commercialization needs is the use of printing techniques that are compatible with upscaling. Here, solution processing of organic solar cells based on three new poly(2,7-carbazole) derivatives is efficiently transferred, without significant losses, to air conditions and to several deposition methods using a simple device architecture. High efficiencies in the range between 5.0 % and 6.3 % are obtained in (rigid) spin-coated, doctor-bladed, and (flexible) slot-die-coated devices, which surpass the reference devices based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). In contrast, inkjet printing does not provide reliable results with the presented polymers, which is attributed to their high molecular weight. When the device area in the best-performing system is increased from 9 mm(2) to 0.7 cm(2), the efficiency drops from 6.2 % to 5.0 %. Photocurrent mapping reveals inhomogeneous current generation derived from changes in the thickness of the active layer.


Assuntos
Carbazóis/química , Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Ar , Peso Molecular , Tiadiazóis/química , Tiofenos/química
5.
ACS Appl Mater Interfaces ; 7(44): 24608-15, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26468993

RESUMO

A detailed investigation of the functionality of inverted organic photovoltaics (OPVs) using bare Ag contacts as the top electrode is presented. The inverted OPVs without a hole-transporting layer (HTL) exhibit a significant gain in hole-carrier selectivity and power-conversion efficiency (PCE) after exposure in ambient conditions. Inverted OPVs comprised of ITO-ZnO-poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)-Ag demonstrate over 3.5% power conversion efficiency only if the devices are exposed in air for over 4 days. As concluded through a series of measurements, the oxygen presence is essential to obtaining fully operational solar cell devices without HTL. Moreover, accelerated stability tests under damp heat conditions (RH = 85% and T = 65 °C) performed to nonencapsulated OPVs demonstrate that HTL-free inverted OPVs exhibit comparable stability to the reference inverted OPVs. Importantly, it is shown that bare Ag top electrodes can be efficiently used in inverted OPVs using various high-performance polymer-fullerene bulk heterojunction material systems demonstrating 6.5% power-conversion efficiencies.

6.
Chemphyschem ; 16(6): 1275-80, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25603784

RESUMO

The use of additives to improve the performance of organic photovoltaic cells has been intensely researched in recent years. However, so far, no system has been reported for the classification of additives and their functions. In this report, a system for classifying additives according to the fundamental mechanism by which they influence microstructure formation for P3HT:PCBM is suggested. The major parameters used for their classification are solubility and drying kinetics. Both are discussed in detail and their consequences on processing are analyzed. Furthermore, a general mechanism to classify the impact of additives on structure formation is suggested and discussed for different materials relevant to organic photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...